numpy.random.Generator.standard_normal¶
method
-
Generator.
standard_normal
(size=None, dtype=np.float64, out=None)¶ Draw samples from a standard Normal distribution (mean=0, stdev=1).
- Parameters
- size
int
ortuple
of ints, optional Output shape. If the given shape is, e.g.,
(m, n, k)
, thenm * n * k
samples are drawn. Default is None, in which case a single value is returned.- dtypedtype, optional
Desired dtype of the result, only float64 and float32 are supported. Byteorder must be native. The default value is np.float64.
- out
ndarray
, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values.
- size
- Returns
See also
normal
Equivalent function with additional
loc
andscale
arguments for setting the mean and standard deviation.
Notes
For random samples from
, use one of:
mu + sigma * gen.standard_normal(size=...) gen.normal(mu, sigma, size=...)
Examples
>>> rng = np.random.default_rng() >>> rng.standard_normal() 2.1923875335537315 #random
>>> s = rng.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random -0.38672696, -0.4685006 ]) # random >>> s.shape (8000,) >>> s = rng.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2)
Two-by-four array of samples from
:
>>> 3 + 2.5 * rng.standard_normal(size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random