numpy.vstack¶
-
numpy.vstack(tup)[source]¶ Stack arrays in sequence vertically (row wise).
This is equivalent to concatenation along the first axis after 1-D arrays of shape (N,) have been reshaped to (1,N). Rebuilds arrays divided by
vsplit.This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions
concatenate,stackandblockprovide more general stacking and concatenation operations.- Parameters
- tupsequence of ndarrays
The arrays must have the same shape along all but the first axis. 1-D arrays must have the same length.
- Returns
- stacked
ndarray The array formed by stacking the given arrays, will be at least 2-D.
- stacked
See also
concatenateJoin a sequence of arrays along an existing axis.
stackJoin a sequence of arrays along a new axis.
blockAssemble an nd-array from nested lists of blocks.
hstackStack arrays in sequence horizontally (column wise).
dstackStack arrays in sequence depth wise (along third axis).
column_stackStack 1-D arrays as columns into a 2-D array.
vsplitSplit an array into multiple sub-arrays vertically (row-wise).
Examples
>>> a = np.array([1, 2, 3]) >>> b = np.array([2, 3, 4]) >>> np.vstack((a,b)) array([[1, 2, 3], [2, 3, 4]])
>>> a = np.array([[1], [2], [3]]) >>> b = np.array([[2], [3], [4]]) >>> np.vstack((a,b)) array([[1], [2], [3], [2], [3], [4]])