numpy.insert¶
-
numpy.insert(arr, obj, values, axis=None)[source]¶ Insert values along the given axis before the given indices.
- Parameters
- arrarray_like
Input array.
- obj
int, slice or sequence of ints Object that defines the index or indices before which values is inserted.
New in version 1.8.0.
Support for multiple insertions when obj is a single scalar or a sequence with one element (similar to calling insert multiple times).
- valuesarray_like
Values to insert into arr. If the type of values is different from that of arr, values is converted to the type of arr. values should be shaped so that
arr[...,obj,...] = valuesis legal.- axis
int, optional Axis along which to insert values. If axis is None then arr is flattened first.
- Returns
See also
appendAppend elements at the end of an array.
concatenateJoin a sequence of arrays along an existing axis.
deleteDelete elements from an array.
Notes
Note that for higher dimensional inserts obj=0 behaves very different from obj=[0] just like arr[:,0,:] = values is different from arr[:,[0],:] = values.
Examples
>>> a = np.array([[1, 1], [2, 2], [3, 3]]) >>> a array([[1, 1], [2, 2], [3, 3]]) >>> np.insert(a, 1, 5) array([1, 5, 1, ..., 2, 3, 3]) >>> np.insert(a, 1, 5, axis=1) array([[1, 5, 1], [2, 5, 2], [3, 5, 3]])
Difference between sequence and scalars:
>>> np.insert(a, [1], [[1],[2],[3]], axis=1) array([[1, 1, 1], [2, 2, 2], [3, 3, 3]]) >>> np.array_equal(np.insert(a, 1, [1, 2, 3], axis=1), ... np.insert(a, [1], [[1],[2],[3]], axis=1)) True
>>> b = a.flatten() >>> b array([1, 1, 2, 2, 3, 3]) >>> np.insert(b, [2, 2], [5, 6]) array([1, 1, 5, ..., 2, 3, 3])
>>> np.insert(b, slice(2, 4), [5, 6]) array([1, 1, 5, ..., 2, 3, 3])
>>> np.insert(b, [2, 2], [7.13, False]) # type casting array([1, 1, 7, ..., 2, 3, 3])
>>> x = np.arange(8).reshape(2, 4) >>> idx = (1, 3) >>> np.insert(x, idx, 999, axis=1) array([[ 0, 999, 1, 2, 999, 3], [ 4, 999, 5, 6, 999, 7]])