numpy.argpartition¶
-
numpy.argpartition(a, kth, axis=-1, kind='introselect', order=None)[source]¶ Perform an indirect partition along the given axis using the algorithm specified by the kind keyword. It returns an array of indices of the same shape as a that index data along the given axis in partitioned order.
New in version 1.8.0.
- Parameters
- aarray_like
Array to sort.
- kth
intor sequence of ints Element index to partition by. The k-th element will be in its final sorted position and all smaller elements will be moved before it and all larger elements behind it. The order all elements in the partitions is undefined. If provided with a sequence of k-th it will partition all of them into their sorted position at once.
- axis
intorNone, optional Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is used.
- kind{‘introselect’}, optional
Selection algorithm. Default is ‘introselect’
- order
strorlistofstr, optional When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties.
- Returns
See also
partitionDescribes partition algorithms used.
ndarray.partitionInplace partition.
argsortFull indirect sort.
take_along_axisApply
index_arrayfrom argpartition to an array as if by calling partition.
Notes
See
partitionfor notes on the different selection algorithms.Examples
One dimensional array:
>>> x = np.array([3, 4, 2, 1]) >>> x[np.argpartition(x, 3)] array([2, 1, 3, 4]) >>> x[np.argpartition(x, (1, 3))] array([1, 2, 3, 4])
>>> x = [3, 4, 2, 1] >>> np.array(x)[np.argpartition(x, 3)] array([2, 1, 3, 4])
Multi-dimensional array:
>>> x = np.array([[3, 4, 2], [1, 3, 1]]) >>> index_array = np.argpartition(x, kth=1, axis=-1) >>> np.take_along_axis(x, index_array, axis=-1) # same as np.partition(x, kth=1) array([[2, 3, 4], [1, 1, 3]])